From Transfer to Scaling: Lessons Learned in Understanding Novel Reinforcement Learning Algorithms
نویسندگان
چکیده
A major drawback of reinforcement learning (RL) is the slow learning rate. We are interested in speeding up RL. We first approached this problem with transfer learning where we have two domains. We developed a method to transfer knowledge from a completely trained RL domain to a partially trained related domain (where we want to speed up learning) and this helped increase the learning rate sufficiently. While trying to come up with a theoretical justification we found that our method of transfer of knowledge was actually scaling the Q-values, which was the main reason for the effects seen. We then scaled the Q-values with an appropriate scalar value in the RL domain after partial learning and saw similar results. Empirical results in a variety of grid worlds and a multi-agent block loading domain that is exceptionally difficult to solve using standard reinforcement learning algorithms show significant speedups in learning using scaling.
منابع مشابه
Advantages and Limitations of using Successor Features for Transfer in Reinforcement Learning
One question central to Reinforcement Learning is how to learn a feature representation that supports algorithm scaling and re-use of learned information from different tasks. Successor Features approach this problem by learning a feature representation that satisfies a temporal constraint. We present an implementation of an approach that decouples the feature representation from the reward fun...
متن کاملReinforcement Learning Transfer Using a Sparse Coded Inter-task Mapping
Reinforcement learning agents can successfully learn in a variety of difficult tasks. A fundamental problem is that they learn slowly in complex environments, inspiring the development of speedup methods such as transfer learning. Transfer improves learning by reusing learned behaviors in similar tasks, usually via an inter-task mapping, which defines how a pair of tasks are related. This paper...
متن کاملReinforcement learning transfer via sparse coding
Although reinforcement learning (RL) has been successfully deployed in a variety of tasks, learning speed remains a fundamental problem for applying RL in complex environments. Transfer learning aims to ameliorate this shortcoming by speeding up learning through the adaptation of previously learned behaviors in similar tasks. Transfer techniques often use an inter-task mapping, which determines...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008